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ABSTRACT

The author's conjecture concerning the knot sequence whose associated B-spline se-
quence has maximum max-norm condition number is disproved. Related condition num-
bers are explored and the corresponding conjecture concerning the 'worst' knot sequence
for them is further supported by numerical results.

AMS (MOS) Subject Classifications: primary 41A15, 65F35; secondary 65D07

Key Words: B-splines, condition number, Chebyshev spline, computing the norm of linear
functionals.

I'

1 supported by the National Science Foundation under Grant No. DMS-8701275
2 supported by the United States Army under Contract No. DAAL03-87-K-0030



The exact condition of the B-spline basis may be hard to determine

Carl de Boor

At the end of a long discussion of the linear functionals which vanish at all B-splines
but one in [B2], I conjectured that Dk,oo, the worst possible condition with respect to the
max-norm of a B-spline basis of order k, occurs when the knots have high multiplicity. I
went further than that on p.155 of [B3 ], where I displayed supposed values of Dk,oo based
on this conjecture. The conjecture was based in good part on detailed calculations of a
closely related problem in [BI], on a calculation of the number Dk which provides a bound
for the worst B-spline condition with respect to any p-norm, and on some calculations
of the max-norm condition itself. In particular, I wrote : "As with the earlier reported
calculations of Dk, it appears from these calculations that" the worst condition "is taken
on at the 'middle' vertex of the simplex" of knot sequences over which the maximization
takes place. "This would mean that

Dk,. --n (Nj,k, -( i))- 1 ljo

with r- (ri) 2 k given by

0 T 1  ... Tk, 7k...=1 2k 1

and 0 = ol < ... < ek = 1 the extrema of the Chebyshev polynomial of degree k - 1
for [0, 1]. This gives the following values for Dk,o . ... ". In other words, I conjectured
that the worst max-norm condition occurs for a knot sequence without interior knots and,
assuming this to be true, computed and displayed this condition number for the first few
values of the order k as the value of Dk,oo.

Note that (Nj,.k,,(oi)) = IaIIo with C,. := Ej Nj,k,,.a(j) the unique spline sat-
isfying C,-(Oj) = (_)k-, j = 1,..., k. This implies that C,- is the Chebyshev polynomial
of degree k - 1 for the interval [0, 1] and the numbers computed and displayed as Dk,oo
in [B2 ] and [B3 ] are therefore the absolutely largest coefficients in the expansion of the
Chebyshev polynomial as a linear combination of the B-splines N,k,,. Because of the spe-
cial nature of the knot sequence 7, these B-splines reduce, on the interval [0,1] of interest,
to the polynomials in the Bernstein form. This led Lyche [L] to the observation that there
was no need for numerical calculations since the Bernstein form for the Chebyshev poly-
nomial could be written out explicitly and a simple expression for its absolutely largest
coefficient could be provided. Because of this connection, I shall refer to the knot sequence
without interior knots more briefly as the Bernstein knots. The explicit formula allowed
Lyche [L] to verify my conjecture that this condition number grows like 2 k .

Since then, there have been several attempts at verifying the conjecture that the worst
max-norm condition is had by the Bernstein knots. It is therefore important to point out
with the aid of specific examples that the conjecture is incorrect in general. In contrast,
more detailed calculations concerning the related number

Dk := supsupsup Ja(j)1Ij1/ I ZNi,k,ta(i)I
t j a d i i



(with Ij := [tj, tj+k] the support of Nj) have so far failed to shake the corresponding
conjecture that Dk is attained by the Bernstein knots.

Condition number defined

It is convenient to define the condition number cond of the basis (Oi) of a normed
linear space S as the number

cond := supZ iai) sp IIsaup(i),,
a IlalI, J~~ia01

For, assuming the basis (pi) so normalized that the first supremum is 1, this gives the
equality

cond = sup 1Ajl,

with
A: Epia(i) i- a(j)

i

the jth coordinate functional for the basis ('ps).
Let t := (ti) be a knot sequence for splines of order k, i.e., ti < ti+k, all i, and let (Ni)

be the corresponding (normalized) B-spline basis for the spline space S := Sk,t (see, e.g.,
[B31, for relevant definitions and details). The Ni are nonnegative and sum to 1, hence

1 Ei Nia(i)l 1
supa 11all"

where here and below we take

lifil 0 := sup If(t)I
tk:<t<t+1

in case t is finite. Denote by Al = Ai,t the ith coordinate functional for this basis and by

condk,t sup Nia(i)ll = sup Ait
a h

its condition number.

A counterexample

Let f be the even piecewise cubic on f-1,1J with just one breakpoint, at 0, given by
f(x):= 3(1+(1-a)(x-1)), x>0;

f(-x), x < 0,
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with T3 = 4()3 - 3() the cubic Chebyshev polynomial and a := -1/2 its negative extreme
point (see Figure 1).

Figure 1. A cubic Chebyshev spline with one knot constructed from the
cubic Chebyshev polynomial

Since Df(O+) = 0, f is in C2 , i.e., a cubic spline with a simple knot, at 0. One readily
computes its cubic B-spline coefficients (for the knot sequence t:=(-1, -1, -1, -1, 0, 1, 1, 1,
1)) to be (1, -7/2, 11/2, -7/2, 1). Since IfiIo, = 1, this implies that cond 4,t _ 5.5, while
the cubic Bernstein-knots condition number is 5 (see [B2], [L]).

A lemma

The number

Dk,oo := sup sup 1/dist-,t,+1 ,t,+k-.n(Ni, span (Nj)j0 )
t i

was introduced in [B2] as a convenient upper bound for the worst B-spline condition
number

condk := sup condk,t.
t

The following Lemma shows that the two numbers are equal, hence that condk = Dk,.

can be determined by local means.

Lemma 1.
sup sup lAi[ = sup [[Ak-1,s[[I,

t i S

where s is any knot sequence of the particular type

S1 = ...- = Sk -1 < Sk- 1 < ... S2k-3 < S2k-2 ... S3k-3

and (lAthj := supf IAfh111f11 with 11f 11, the max-norm on I := [-1,1].

Proof. It is sufficient to prove that, for any t and any i,

11A1 : D1 := sup llAk-1,,l1I.
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Since Ai()o = 1 for any i, we have mini I[Aili ! 1 and, in particular, D > 1. If ti+l = ti+k-1,

and without loss of generality, ti < ti+x, then Aif = f(ti+), hence I[Ail = 1 < D, and we
are done in this case.

In the contrary case, tj+1 < ti+k-1, hence, after a linear change of the independent
variable, we may assume that ti+ 1 = -,ti+k-1 = 1. Now let t' be the knot sequence
obtained from t by inserting both -1 and 1 enough times to increase their multiplicity to
k-1 and let Z" be such that = ti+j for j = 1,...,k - 1. Then, with A' the jth
coordinate functional for the basis (Ni,k,t') of the refined spline space of the same order,

II 1 II jAI ,II,

since the (now standard) formula (cf., e.g., p.116 of [B 3])

Aif =

r<k

with i E]ti,ti+k[ and

0 := (ti+1 -- ).(ti+k-1 - .)/(k - 1)!,

shows that Aif only involves the knots ti+j,j = 1,..., k-i, hence Aif = A',f for all f E S.
This finishes the proof since

IIM, 11 = sup IA ,f 1/Iflh < sup JA ,f /IfrIz < D.
f f

Computation of Dk,e,

According to Lemma 1, Dk,oo is the maximum of the function
[_ -1, 11]k- 3  ]pR Ik xl

wit _ -3- ,sJ

with (sk+i)i=1 the sequence of 'interior' knots of the knot sequence s = ()k3 in [-1,1]
obtained from a by ordering. The failed conjecture amounts to the statement that the
maximum is taken on at the 'middle' vertex of the domain of d.

For k = 3, there are no interior knots and, correspondingly, D 3,, = 3, the condition
number of the Bernstein-knot B-splines.

For k = 4, there is just one interior knot, hence the calculation of Dk,oo amounts
to the maximization of the function d( ) as traverses the interval [-1,1]. A drawing of
this function is available in Figure 2; it is the hindmost curve. This shows that d has a
local minimum at = 0 (necessarily a critical point because of symmetry), and that the
maximum (and, at least numerically, a good estimate for D 4 ,,,) is 5.5680... which occurs
when ± --. 472.
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Figure 2. Condition number of cubic B-splines with two interior knots.
Sections are shown corresponding to one knot fixed while the
other traverses [-1,1]. As the 'fixed' knot traverses [-1,1], the
corresponding section is increasingly offset to provide 'insight'
into the surface.

It is, in some sense, not too surprising that, for k = 4, the maximum occurs in
the interior rather than at a vertex, since, after all, = 0 is necessarily a critical point,
by symmetry, and there are, correspondingly, two 'middle' vertices. It is much more
discouraging that, for k = 5, the maximum is also taken on at an interior point, for, in
this case, there is only one 'middle' vertex. Figure 3 shows d as a function of the two
interior knots. According to [B2], [LI, the max-norm condition in the quartic case for the
Bernstein knots is 11 2/3. But one computes in this case that D,5 ,,, 12.088 and this
occurs when the two interior knots, both simple, are at the symmetric points - ±.89.

The sharp drop toward the boundary values is an indication of the general situation.
Numerical experimentation for k < 8 seems to indicate that, for k > 3, the maximum
occurs at an s close to but not at a vertex, with d raising sharply initially as one moves
away from the boundary. For odd k, the maximum seems to occur near the 'middle'vertex.
For even k, it occurs at a point (two points for small k) near what passes for the 'middle'
vertex in that case, i.e., with both 0 and 1 knots of the same multiplicity and 1/2 a simple
knot.

For the evaluation of IIjjAjK,, consider the 'Chebyshev spline' C. for the knot sequence
s, i.e., C. E S Sk,,, of max-norm 1, and maximally alternating, i.e., there is an increasing
sequence (,~) ' (with n := dimS) so that C5(e,) = (-)"-, all j. (It can be shown that
such C, exists, and uniquely so (see, e.g., [MI.) Let c be the sequence of its B-spline
coefficients. This sequence necessarily strictly alternates in sign at least n - 1 times, hence
all c(j) are nonzero.
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Figure 3. Condition number of quartic B-splines with two interior knots

This implies that, for each j, Cj := Cs/c(j) is well defined and in Nj, + span(Ni)2 j,
therefore necessarily the error in the best uniform approximation to Nj from span(Ni)igj =
kerAj,r, hence an extremal for Aj,s, and therefore II j,slo, = 1/1lCjj,,lo = fc(j)j. This
reduces the evaluation of the function d to be maximized to the numerical construction of
the Chebyshev spline, as is done in the following MATLAB (cf. [MBLK]) script.

function [sp,rho,aiter]=chebmk(tk,rho)

% [sp,rho,a,iter]=chebmk(t,k[,rho])

% returns the Chebyshev spline f or the given knot sequence ti, ... , n+k,
% as well as the sequence rho of its alternating points and the sequence

a of its B-spline coefficients. On input, rho is assumed to contain a
% reasonable first guess. If missing, the knot averages are used.

% By definition, the Chebyshev spline is the unique linear combination
% of the B-splines for the knot sequence t which has norm I on [tik,t.n+il
% and takes on the values i and -1 alternatingly the maximum possible number,
% i.e., n times, and is positive near tn+ .

npk=length(t);n=npk-k;
t=[t(k)*ones(i,k) t(k+I:n) t(n+i)*ones(1,k)];
% here I omitted statements which would initialize rho as the average of
% k-I neighboring knots in case the initial guess provided is inadequate.

rho(1)-t(k);rho(n)-t(n+l);% the first and last rho are the endpoints of the
% interval.

trho=rho(2:n-1); % only the interior rho will be iterated on.
y=ones(rho); % set up the oscillating data to be matched by ...
y(n-i:-2:1)-y(n-:-2:I); % ... the Chebyshev spline.
change=;tsize=rho(n)-rho(1); % set up convergence control.

iter=O;
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while (chan ge>I.e-8)k(iter<8);
sp=spint t,rho,y); % compute the spline with knot sequence t which takes

on the value y(j) at rho(J) , j=i.....n.
dsp=spder(sp); % construct the first derivative of this spline,..
drho=spval(dsp,trho); % ...and evaluate it at the interior rho .
ddrho=spval(spder(dsp),trho); % also evaluate the second derivative of that

% spline at the interior rho
drho=-drho./ddrho; % compute the Newton step ...
trho=trho+drho; % ... and add it to the current interior rho
% prevent modified rho from violating the expected interlacing by pulling
% back on the proposed Newton step if necessary:
count=O;
while Cany(trho<t(3:n)) Iany(trho>t(k+i:n+k-2)) Iany(diff(trho)<=O)),

drho=drho/2 ; trho=trho-drho;
count=count1. ; if (count>20) .error('no convergence'), end

end
change=max(abs(drho))/tsize % compute relative size of the step taken.
rho(2:n-1)=trho; % update rho
iter=iter+l;

end

[dummy,a]=spunmk(sp); % recover the B-splin. coefficients a of the Chebyshev
% spline.

The calculations become quite delicate with increasing k and increasing nonuniformity
of the knot sequence. I have not found a certain rule for choosing a satisfactory first guess,
but have very often succeeded with the aid of continuation. For example, if the Chebyshev
spline for the same (interior) knots but of one order lower is already available, then the
midpoints between its neighboring extreme points often provide good first guesses for the
interior extreme points of the Chebyshev spline to be computed.

Note that the 'Chebyshev spline' used here is in general different from the 'Chebyshev-
Euler spline' used in Schoenberg and Cavaretta's solution [SC] of the Landau problem on
the halfline, and which also appears prominently in Tikhomirov's work (cf. [T]). The latter
might be called 'perfect Chebyshev splines' since they are Chebyshev splines whose highest
nontrivial derivative is absolutely constant, a feat achieved only by an appropriate choice
of knots. The more general Chebyshev splines of interest here have most recently appeared
in Demko's [D] nice proof of the existence of 'good' interpolation points for arbitrary knot
sequences and, almost simultaneously, in Morken (M], a reference of which I became aware
only recently. Morken devotes an entire chapter to the Chebyshev spline (which he calls,
perhaps more helpfully, the 'equioscillating spline'), proving its uniqueness by a detailed
study of the sign, .,tructure. I note that uniqueness can also be deduced from the fact
(mentioned earlier) that Cj is an extremal for A,.

The 1-norm condition number

When the norm on S = Sk,t is the 1-norm,

!lfll := / If(t)Idt,

it is preferable to use also the 1-norm instead of the max-norm for the B-spline coefficients
and to use a different normalization for the B-splines, too. Precisely, define

condO,t := II IIl'-Il
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with
(D: CI I Sk,t C Ll[tk,tn+l]" a i-* Mja(j)

and
k

Al 3i: A/13 ,k,t tjkk- tj Nkttj~k - j

Since IIM jII < 1 for all j, we have

hence = sup ZI E Mja(i)li = 1,

hence
Dk,1 := sup condt = sup l1¢-I1.

t t

It is worthwhile to point out that, by duality, this number coincides with the Favard
constant [B 1]

inf{IIDkfII.c :f E Lk),f = f, on t}K(k) := sup 0
fot max k!I[tj,..., ti+kjf0

which measures how small one can make the kth derivative of an interpolating function

(relative to the kth divided differences [ti,..., ti+klfO of the given data). This fact has also
been found by Otto [0], by rather different means.

Lemma 2. Dk,1 = K(k).

Proof. Since k![tj,... ,ti+k]f = f MiDkf, we can write K(k) also as

inf{jjg 11 : f Mjg = f Mjgo, all j}K ( k) = sup sup
t goEL. maxj IfMjgo

This shows that

K(k) = sup IIFII,
t

with
F: fo, -S* : a - ji3a(i)

and yj := 11i,kt := k Ai,k,t the linear functiolals dual to the Mj's. But this implies
that F = (D*)-1 and, in particular, IIFiI = [PP-II.

It follows that the calculations of K(k) in [B1 ) are pertinent for the calculation of
Dk,1. These calculations are based on the fact that

K(k) 1 + 2(k - 1) sup IIAII,
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Figure 4. IIAHI for k 5 as a function of two interior knots

with 0 = sj ... = Sk < Sk+1 < ... < 1 = 52k-1 = ... = S3k-2 and A the linear functional
on Sk,, C L1 [0, 1] which carries E, Mja(j) to E-,k a(j); see [B1 ] for details.

It is possible to compute IlAlj as a function of (sk+j)k - 2 by constructing the unique
absolutely constant step function h on [0,1] with 2k - 2 jumps for which Af = f hf for all
f E S. The calculations are almost identical to those reported in the final section. They
show that, for small k, the supremum is achieved at one of the vertices of the domain over
which the supremum is taken, i.e., when there are no interior knots. This is illustrated in
Figure 4 for k = 5.

The p-norm condition number

Finally, consider the condition number of the B-spline basis when the norm on S is
the p-norm,

fp :- ( f+t+ jf(t)lPdt)a1p
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It is shown in [B0 ] (see also [B21) that

D-'IIE'/Pajjp 5-il EANja('Jjp !- IIE'/Pallp,

J

with
Dk sup sup kliupill( i), (Ea)(j) := (IIjI/k)Oa(j), all j,

t i

and II IIi) := sup I /
f f1, If

In particular, Dk is an upper bound for both Dk,o and Dk,i, while also kDkl > Dk.

Since j1j,t = t-Aj,t, it follows that

Dk = sup IjAk,.II,
S

wil 1 =...Sk = 0 < Sk+ < ... < S2k- < =2k =...=Sk-1.

Explicitly,

Dk = sup sup IliI sup JA ,tfI
t i f f, ll"

Hence, after a linear change of variables which carries the typical knot interval I = [ti, ti+k]

to the unit interval,
D k = sup sup I

a f f0 IfI

with 0 = Sk < Sk+1 <...<S2k = 1. Since this involves the norm of

A := Ak,s

on S := Sk,s n L1 [0, 1], the knots sj for j < k or j > 2k are immaterial; I take them to be
0 or 1 respectively. The remaining knots lie in [0,1].

Let n := dim S. According to [B2], )) 1) is computable as the absolute height JJhl), of
the unique absolutely constant step function h on [0,1] with n steps which represents A in
the sense that

Af J hf for all f E S.

If, more precisely, 0 = sk+r < sk+r+l, then 1h1Zoo equals the norm of A = Ae,t on S =

Sk,t n LI [0, 1], with

ti ... tk =0 <tk+1 ... <tn < tn+l ... tn+k

and
=k - r.
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* The foil, wing MATLAB script returns this step function h for given e and given intt
(tk+r+ I, --- ,. )

* function [beta,tau~iterlstepmk~left~intt~k~tau)

(beta,tau~iter]=stepmk~left~intt~k, (.tauj)

%returns the absolutely constant step function with steps
% beta~i). ,.. and breaks 0 = tau(t) <... <tau(n+i) = I which
% represents the Clef t)-th coordinate functional of the 5-splin. basis for the
% knot sequence t := [zeros~i~k) intt ones(l~k)] , hence provides the norm of
% that functional wrto the i-norm on [0,1].

% On input. tau is assumed to contain a reasonable first guess.
% If missing or inappropriate, the knot averages are used.

toll1. -4;
t=[zeros~i,k) intt ones(i,k)J;
npk~length Ct) ;n~npk-k;

% here I omitted statements which would initialize tau as the average of
% k neighboring knots in case the initial guess provided is inadequate.

dt=k*diag~ones~l,n) ./(t(i+k:n~k)-t~i:n))); % matrix needed in the computation
% of change in tau.

b=zeros~n.I);b~left)=k;b~left-i)=-k; % generate the right side..
eps~ones~n~i); % ... and a properly alternating
eps(l:2:n)=-eps(1:2:n); % ... sequence.
ttau=tau(2:n) ;gapil;

iter=0;
while (0=='O);

% generate the coefficient matrix. (Here, and below, spcol(s~k,tau) is the
* ~ % matrix whose i-th row consists of the values at tau Ci) of all the

% B-splines of order k for the knot sequence s . and diff(B) is the
%~ matrix with entries B~i~t~j)-E~i~j) .
A = (diff~epcolC(t iJ,k+i.tau)))';

beta = A\b; % compute the solution of the equation Asbeta - b
betaminmin~abs(beta)); % compute the relative nonconstancy..
gap C max~absbeta))-betamin)/betamin; %... of abs(beta) and..
beta-gap - [bsta~l).gap*1.e.4J %... print it out, along with beta~i)

if Citer>O)kC(gap<tol)1I(iter>iO)), return; end

% generate the change in tau:
c - (spcol(t~k~ttau)*dt zeros(n-Iil)J;
y - [-diff(c') A*epsj\b:.
dtau = -Cy(i:n-1)./diff(beta))';

% prevent changed tau from violating the expected interlacing by pulling
% back on the Newton step if necessary:
count0O;
while (any~ttaut~l:n-I)) Iany(ttau>t~k.2:n~k)) Iany~diff~ttau)<0O)),

dtaudtau/2 ;ttauttau-dtau;
count=countsi;if (count>20) ,errorC 'no convergence') ,end

end
tau-(O ttau 1];
iteriter+1;

and

Figures 5 and 6 parallel Figures 2 and 3 and illustrate thereby that the function being
maximized in order to obtain Dk does appear to be taking on that maximum at a 'middle'

* vertex-, of the domain. Extensive calculations with the above script for k < 21 have not
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Figure 5. IfAk,tII for k = 4 as a function of the two interior knots
(tk+l,tk+2) E (0,1)2

01

20

17

Figure 6. iiAk-1,tll for k = 5 as a function of the two interior knots
(tk+l,tk+2) E (0,1)2

produced any counterexample to the conjecture that IIAk,sJl is maximized when s has no
interior knots.

It is also evident that I1 ,.11 is minimized when s has just one interior knot, of maximal
multiplicity, i.e., of multiplicity k - 1. The characterization of VJAJV as the max-norm of
A's unique representer h in the form of an absolutely constant step function with n steps

12



makes it easy to see that, in that case, the norm is independent of the location of that
interior knot.

Finally, the calculations of the representing step function h presented no numerical
difficulties in all cases tried (up to k = 21), in marked contrast to the calculation of the
Chebyshev splines.

Conclusion

There is numerical evidence that, in calculations devoted to bounding the p-norm
condition number of the (appropriately scaled) B-spline basis, the extreme case occurs
for a knot sequence without interior knots, while simple numerical examples show this
not to be the case for the max-norm condition number itself. This is disappointing since
it is only in the latter case that there seems to be a formula available for the condition
number when there are no interior knots. Hence, even if the worst-case conjecture for
the bound calculations for the p-norm condition number were proved, it would, offhand,
not help in settling the problem of interest. This is the proof that all of these numbers,
Dk,., Dk,l = K(k), and Dk, grow exactly like 2 k, as is suggested by numerical experiment.
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